Privacy Tech: Understanding Internet Security

Dec 14, 2020
Share this post
Sharing to FacebookSharing to LinkedInSharing to XSharing to Email

There exists a vibrant ecosystem of specialized security tools. The sad truth is that it is almost impossible to reach 100% invulnerability.

Until recently, one of the main tools that organizations had in their toolbox were symmetric and asymmetric encryption to encrypt data at rest and data in transit. That left a glaring vulnerability: what about data in use? While antivirus software, threat detection tools, and access controls can help prevent unauthorized access to data, they are limited in their ability to protect organizations against social engineering or insider threats. In addition to the infrastructures that organizations are already used to having, there are new key requirements that can only be satisfied through the use of advanced privacy enhancing technologies (PETs) that give users more control over their data and their privacy.

PETs are necessary not only for data privacy, but more generally for data security

As defined in the GDPR, data protection means keeping data safe from unauthorized access” whereas “data privacy means empowering your users to make their own decisions about who can process their data and for what purpose.”

Ensuring data privacy within an enterprise software is therefore dependent on proper data protection measures being in place. Data cannot be protected without an appropriate cybersecurity infrastructure being set up. Such infrastructure usually includes encryption at rest and encryption in transit, strict access controls, network management and monitoring, phishing attack detection, employee training programs,among others.

In particular, organizations need to know where sensitive data are stored and how they are used.

Privacy tech comes full circle to ensure stronger cybersecurity by helping:

  1. keep track of which parts of a network are most vulnerable to data leaks, and
  2. limit the exposure of sensitive data or personally identifiable & quasi-identifiable information during processing time.

What we can do as engineers is to continue building up the ecosystem which makes access to personal and sensitive data harder and harder for malicious actors to exploit. Fairly quickly, it is becoming obvious that cybersecurity, privacy, and data protection need to be intimately intertwined in order to reach the highest possible levels of user protection.

More Fine-Grained Access Control

Access control is obviously central to keeping information safe. But unless you’re dealing with structured data alone, determining which information is sensitive and which is not becomes quite tricky. Enter AI-based personally identifiable information (PII) and quasi-identifiable information detection for unstructured data. Using Natural Language Processing and Computer Vision, it is now possible to detect PII in unstructured files with 99%+ accuracy.

You can imagine a database which returns filtered queries to machine learning engineers who are training a sentiment analysis model on chat logs. Or a database which security personnel use to review security footage for potential theft (only re-identifying the video feed once they’ve spotted a culprit). There often is no need for personal data to be present in order to get value out of a particular set of data. So why even bother sharing it, especially with so many employees working from home and using insecure networks?

The more times personal data are replicated, the more difficult they become to track and keep safe

AI-based unstructured data redaction is a key component to the next generation of fine-grained access. The very same AI system used for personal data redaction can also be used to locate where personal data are stored within a network and can thus be used to prevent data loss.

Privacy Tech: Understanding Internet Security

Personal Data Tracking for Data Loss Prevention and Network Management

Data Loss Prevention requires intimate knowledge about information movement: one cannot protect sensitive data without even knowing if and where it exists, and recognizing personal data across a number of unstructured data types is central to data protection and measuring risk.

Currently, most network management companies and data loss prevention companies don’t have the capabilities to accurately quantify the risk of sensitive data exposure within unstructured data using context-based data discovery. Unstructured data makes up about 80% of total data produced (see The biggest data challenges that you might not even know you have) and as data protection and data privacy regulations multiply they are becoming an ever-growing risk to companies who have few insights as to what personal data they are storing and where. It is therefore extremely difficult for companies to keep proper track of any personal data that might be subject to access to information requests or requests to be forgotten. This is becoming an insurmountable task for humans to deal with. Enter scalable, accurate, and easy-to-deploy AI-based PII detection.

Beyond personal data detection and redaction there are numerous other methods which can be combined within existing cybersecurity infrastructure to improve data privacy and protection for different use cases.

Limiting Unencrypted Data Processing

For certain use cases (like processing credit card numbers or social security numbers), access to information must be strictly limited. Homomorphic Encryption and Secure Multiparty Computation, for example, allow for data to be encrypted/garbled throughout the entire computational process by producing unencrypted/ungarbled output only for the right parties to see.

Another technology which falls under this category is Zero-Knowledge Proofs, which is used when one party wants to prove to another (say a validator) that they have certain information without the validator finding out what that information is. Think authentication systems, for example, where your face is used to log you into a system which only has access to an encrypted version of your face and needs to compare it to their set of securely stored values.

Data Processing for Security Processing data while encrypted or garbled is a great choice when an operation is repeatable and the data does not have to be seen in order to be processed. Especially when an organization that requires quantum-safe security (banks, insurance companies, etc.) also has the budget to hire an internal team of experts or to pay a company for a bespoke solution.

Data Processing on the Edge

Processing data directly on an edge device (ie. IoT, phone, browser) can greatly limit risk exposure — it’s probably the safest approach an organization can take when processing data. Granted, it is not always the most practical. One major limitation is when data needs to be aggregated to provide value, like traffic data processing. The edge is great for deploying algorithms that are deterministic and use user-specific inputs, or have alternative relevant data to learn from in order to provide accurate probabilistic user-specific outputs.

There is a lot of work going into edge machine learning, and both Apple and Google have such algorithms deployed on their devices to improve privacy-preserving user experience. For now, it takes a specialized team to create edge machine learning algorithms that are truly privacy-preserving and also improve model accuracy. Thanks to organizations like OpenMined, Google, and Apple, this will get easier as time goes on.

Which Privacy Technique Is Right For Me?

Which privacy technique you choose to integrate within your infrastructure is entirely use-case dependent. There is really no one-size-fits-all for privacy technology. Once you have determined which technologies are optimal for your use case (this PETs decision tree can help), you can narrow down your choice even further by gaining a better understanding of your threat model (see, for example, Microsoft’s STRIDE model) and what kind of adversaries you’re expecting to dealing with.

Still unsure which security technique is right for you? Contact us for more information.

Data Left Behind: AI Scribes’ Promises in Healthcare

Data Left Behind: Healthcare’s Untapped Goldmine

The Future of Health Data: How New Tech is Changing the Game

Why is linguistics essential when dealing with healthcare data?

Why Health Data Strategies Fail Before They Start

Private AI to Redefine Enterprise Data Privacy and Compliance with NVIDIA

EDPB’s Pseudonymization Guideline and the Challenge of Unstructured Data

HHS’ proposed HIPAA Amendment to Strengthen Cybersecurity in Healthcare and how Private AI can Support Compliance

Japan's Health Data Anonymization Act: Enabling Large-Scale Health Research

What the International AI Safety Report 2025 has to say about Privacy Risks from General Purpose AI

Private AI 4.0: Your Data’s Potential, Protected and Unlocked

How Private AI Facilitates GDPR Compliance for AI Models: Insights from the EDPB's Latest Opinion

Navigating the New Frontier of Data Privacy: Protecting Confidential Company Information in the Age of AI

Belgium’s Data Protection Authority on the Interplay of the EU AI Act and the GDPR

Enhancing Compliance with US Privacy Regulations for the Insurance Industry Using Private AI

Navigating Compliance with Quebec’s Act Respecting Health and Social Services Information Through Private AI’s De-identification Technology

Unlocking New Levels of Accuracy in Privacy-Preserving AI with Co-Reference Resolution

Strengthened Data Protection Enforcement on the Horizon in Japan

How Private AI Can Help to Comply with Thailand's PDPA

How Private AI Can Help Financial Institutions Comply with OSFI Guidelines

The American Privacy Rights Act – The Next Generation of Privacy Laws

How Private AI Can Help with Compliance under China’s Personal Information Protection Law (PIPL)

PII Redaction for Reviews Data: Ensuring Privacy Compliance when Using Review APIs

Independent Review Certifies Private AI’s PII Identification Model as Secure and Reliable

To Use or Not to Use AI: A Delicate Balance Between Productivity and Privacy

To Use or Not to Use AI: A Delicate Balance Between Productivity and Privacy

News from NIST: Dioptra, AI Risk Management Framework (AI RMF) Generative AI Profile, and How PII Identification and Redaction can Support Suggested Best Practices

Handling Personal Information by Financial Institutions in Japan – The Strict Requirements of the FSA Guidelines

日本における金融機関の個人情報の取り扱い - 金融庁ガイドラインの要件

Leveraging Private AI to Meet the EDPB’s AI Audit Checklist for GDPR-Compliant AI Systems

Who is Responsible for Protecting PII?

How Private AI can help the Public Sector to Comply with the Strengthening Cyber Security and Building Trust in the Public Sector Act, 2024

A Comparison of the Approaches to Generative AI in Japan and China

Updated OECD AI Principles to keep up with novel and increased risks from general purpose and generative AI

Is Consent Required for Processing Personal Data via LLMs?

The evolving landscape of data privacy legislation in healthcare in Germany

The CIO’s and CISO’s Guide for Proactive Reporting and DLP with Private AI and Elastic

The Evolving Landscape of Health Data Protection Laws in the United States

Comparing Privacy and Safety Concerns Around Llama 2, GPT4, and Gemini

How to Safely Redact PII from Segment Events using Destination Insert Functions and Private AI API

WHO’s AI Ethics and Governance Guidance for Large Multi-Modal Models operating in the Health Sector – Data Protection Considerations

How to Protect Confidential Corporate Information in the ChatGPT Era

Unlocking the Power of Retrieval Augmented Generation with Added Privacy: A Comprehensive Guide

Leveraging ChatGPT and other AI Tools for Legal Services

Leveraging ChatGPT and other AI tools for HR

Leveraging ChatGPT in the Banking Industry

Law 25 and Data Transfers Outside of Quebec

The Colorado and Connecticut Data Privacy Acts

Unlocking Compliance with the Japanese Data Privacy Act (APPI) using Private AI

Tokenization and Its Benefits for Data Protection

Private AI Launches Cloud API to Streamline Data Privacy

Processing of Special Categories of Data in Germany

End-to-end Privacy Management

Privacy Breach Reporting Requirements under Law25

Migrating Your Privacy Workflows from Amazon Comprehend to Private AI

A Comparison of the Approaches to Generative AI in the US and EU

Benefits of AI in Healthcare and Data Sources (Part 1)

Privacy Attacks against Data and AI Models (Part 3)

Risks of Noncompliance and Challenges around Privacy-Preserving Techniques (Part 2)

Enhancing Data Lake Security: A Guide to PII Scanning in S3 buckets

The Costs of a Data Breach in the Healthcare Sector and its Privacy Compliance Implications

Navigating GDPR Compliance in the Life Cycle of LLM-Based Solutions

What’s New in Version 3.8

How to Protect Your Business from Data Leaks: Lessons from Toyota and the Department of Home Affairs

New York's Acceptable Use of AI Policy: A Focus on Privacy Obligations

Safeguarding Personal Data in Sentiment Analysis: A Guide to PII Anonymization

Changes to South Korea’s Personal Information Protection Act to Take Effect on March 15, 2024

Australia’s Plan to Regulate High-Risk AI

How Private AI can help comply with the EU AI Act

Comment la Loi 25 Impacte l'Utilisation de ChatGPT et de l'IA en Général

Endgültiger Entwurf des Gesetzes über Künstliche Intelligenz – Datenschutzpflichten der KI-Modelle mit Allgemeinem Verwendungszweck

How Law25 Impacts the Use of ChatGPT and AI in General

Is Salesforce Law25 Compliant?

Creating De-Identified Embeddings

Exciting Updates in 3.7

EU AI Act Final Draft – Obligations of General-Purpose AI Systems relating to Data Privacy

FTC Privacy Enforcement Actions Against AI Companies

The CCPA, CPRA, and California's Evolving Data Protection Landscape

HIPAA Compliance – Expert Determination Aided by Private AI

Private AI Software As a Service Agreement

EU's Review of Canada's Data Protection Adequacy: Implications for Ongoing Privacy Reform

Acceptable Use Policy

ISO/IEC 42001: A New Standard for Ethical and Responsible AI Management

Reviewing OpenAI's 31st Jan 2024 Privacy and Business Terms Updates

Comparing OpenAI vs. Azure OpenAI Services

Quebec’s Draft Regulation Respecting the Anonymization of Personal Information

Version 3.6 Release: Enhanced Streaming, Auto Model Selection, and More in Our Data Privacy Platform

Brazil's LGPD: Anonymization, Pseudonymization, and Access Requests

LGPD do Brasil: Anonimização, Pseudonimização e Solicitações de Acesso à Informação

Canada’s Principles for Responsible, Trustworthy and Privacy-Protective Generative AI Technologies and How to Comply Using Private AI

Private AI Named One of The Most Innovative RegTech Companies by RegTech100

Data Integrity, Data Security, and the New NIST Cybersecurity Framework

Safeguarding Privacy with Commercial LLMs

Cybersecurity in the Public Sector: Protecting Vital Services

Privacy Impact Assessment (PIA) Requirements under Law25

Elevate Your Experience with Version 3.5

Fine-Tuning LLMs with a Focus on Privacy

GDPR in Germany: Challenges of German Data Privacy (Part 2)

Comply with US Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence using Private AI

How to Comply with EU AI Act using PrivateGPT