The Data Conundrum: Navigating Healthcare Privacy Legislation in Canada

Jan 5, 2023
Share this post
Sharing to FacebookSharing to LinkedInSharing to XSharing to Email

The Canadian healthcare and health tech space is robust and growing at warp speed.Globally health tech, especially in the AI field, is evolving much faster than privacy legislation can keep pace. As such, with most sensitive of data at hand, this conundrum is becoming a complex space to navigate in the Canadian privacy legislative spectrum for many data driven companies. Traversing across important privacy-centric practices such as de-identification, data minimization and data sharing, the Canadian healthcare privacy legislation is not all that transparent.The privacy protection of personal information (PI) and personal health information (PHI) is prioritized unequivocally across Canada at the federal, provincial, and territorial levels. There are 10 provinces, 3 territories, and the federal government as the jurisdictions where a plethora of privacy and healthcare privacy legislation exist. Some Canadian provinces (Ontario, Nova Scotia, New Brunswick, and Newfoundland & Labrador) have their healthcare privacy legislation deemed substantially similar to the federal privacy law, the Personal Information Protection and Electronic Documents Act (PIPEDA). Healthcare providers and organizations working in these provinces are exempt from PIPEDA and must comply with their respective provincial healthcare privacy legislation. Such legislation in the remaining provinces and territories hasnot been declared substantially similar to PIPEDA hence PIPEDA may apply.Since PIPEDA came into effect in 2004, it has not been amended to reflect the rapid technological advancements and exchange of big data.The federal government is planning on repealing PIPEDA by enacting the new proposed federal Consumer Privacy Protection Act (CPPA), one of the three proposed acts under Bill C-27 (Digital Implementation Act). The other two acts are the Personal Information and Data Protection Tribunal (PIDTA) and Artificial Intelligence and Data Act (AIDA).There are many common themes in health and private sector privacy legislation nationwide that have notable impacts on the collection, use, processing, retention, and disclosure of PI and PHI. For the purpose of this blog, the three areas of broad discussion are de-identified data (PI and PHI), data minimization, and data sharing with third-party service providers.

De-Identified Data

The consensus on the definition of de-identified PI varies from region to region. The definition of “de-identified data” (in scope for this blog) will be discussed within the context of PIPEDA, CPPA, Ontario’s healthare privacy legislation Personal Health Information Protection Act (PHIPA), and Quebec’s Bill 64.

PIPEDA:

PIPEDA applies to the collection, use, and disclosure of all PI. It applies to any federal body along with provinces and territories that do not have substantially similar legislation. In PIPEDA, the concept of de-identification of PI is not expressly addressed. Rather it is implied via reference to anonymizing data resulting in issues arising around the requirement of express or implied consent to generate de-identified data from PI.

CPPA: 
“de-identify means to modify personal information so that an individual cannot be directly identified from it though a risk of the individual being identified remains.”

Exceptions to consent under the CPPA (section 20) states that knowledge and consent are not required to de-identify personal information:

“An organization may use an individual’s personal information without their knowledge or consent to de-identify the information.”

Regarding the measures that an organization is recommended to follow, CPPA (section 74) provides that:

“An organization that de-identifies personal information must ensure that any technical and administrative measures applied to the information are proportionate to the purpose for which the information is de-identified and the sensitivity of the personal information.” 
PHIPA:
“de-identify, in relation to the personal health information of an individual, means to remove any information that identifies the individual or for which it is reasonably foreseeable in the circumstances that it could be utilized, either alone or with other information, to identify the individual, and “de-identification” has a corresponding meaning;”

Under PIPEDA, CPPA, and PHIPA, there is consensus that if the PI (information about an identifiable individual) is not identifiable from a de-identified dataset, then that dataset is not considered PI or PHI therefore, it is not regulated by PIPEDA, PHIPA, and eventually the proposed CPPA. Furthermore, it is generally understood that once a dataset is de-identified, the organization that collects, uses, and discloses that de-identified dataset may do so without any notice or consent and is subject to the prohibition of re-identification.

Bill 64:
"… personal information is de-identified if it no longer allows the person concerned to be directly identified."

In regards to the measures that an organization is recommended to follow, Bill 64 provides that:

"…information concerning a natural person is anonymized if it is, at all times, reasonably foreseeable in the circumstances that it irreversibly no longer allows the person to be identified directly or indirectly. Information anonymized under this Act must be anonymized according to generally accepted best practices and according to the criteria and terms determined by regulation."

Under Bill 64 (similar to CPPA and PHIPA), PI is considered to be de-identified if the removal of direct identifiers has occurred.Like CPPA, Bill 64 also addresses anonymization in relation to the irreversible de-identification of PI via the removal of direct and indirect identifiers. Sign Up

Data Minimization

In Canada (as is the case globally), organizations must have legitimate business objectives prior to collecting PI. And if the collection is pursued, then it is incumbent upon the organization to securely retain, use and dispose of it in compliance with legislative requirements. As part of an organization’s compliance efforts with legislation and best practices, they should synthesize and implement policies and procedures to minimize the personal information they collect, use and retain. PIPEDA (unlike other similar legislation) addresses the concept of data minimization directly by way of Fair Information Principles:

Principle 4: Limiting Collection:
“The collection of personal information must be limited to that which is needed for the purposes identified by the organization. Information must be collected by fair and lawful means.”
Principle 5: Limiting Use, Disclosure, and Retention
“Unless the individual consents otherwise or it is required by law, personal information can only be used or disclosed for the purposes for which it was collected. Personal information must only be kept as long as required to serve those purposes.”

Third-party service providers

Unlike the GDPR, which provides specific requirements for the exchange of PI between a Data Controller and Data Processor, the CPPA addresses this issue generally.As the CPPA and its sister acts undergo a second hearing, thus far, it is not clear if this act provides third-party service providers with the right to de-identify PI and subsequently use the de-identified PI for their own purposes. The current privacy legislation at a high-level touch on this issue, if not silent altogether.An overarching understanding may be that one could obtain consent from the organization providing the de-identified PHI or PI (via service contracts) or the individuals to whom the de-identified personal information pertains. It would be prudent for the source organization (providing the personal information) to require service contracts to clearly delineate the obligations in respect of both parties concerning protection measures that ought to be undertaken to protect the personal information within their purview.

Final Thoughts

In its current state, the Canadian healthcare privacy legislation lacks transparency and clear direction on handling PI and PHI via de-identification, data minimization, and data sharing practices. However, the pressure is on legislatures to produce more robust and succinct laws reflecting the complex and evolving technological ecosystem.About the Author: A passionate Privacy and Security Evangelist, Saima Fancy’s professional background and work is cross-cutting across various disciplines ranging from Data Privacy and Security, Engineering, Health Law and Health Policy. She leverages her diverse experiences and perspectives and funnels them into the interdisciplinary field of Privacy Engineering. Most recently, she was a Privacy Engineer at Twitter in the FlightWatch Team. During her free time, Saima volunteers as Faculty Council at the University of Toronto Faculty of Engineering, NIST Privacy Workforce Public Working Group (Risk Assessment), has presented at IAPP and (ISC)2 events (amongst others).

Data Left Behind: AI Scribes’ Promises in Healthcare

Data Left Behind: Healthcare’s Untapped Goldmine

The Future of Health Data: How New Tech is Changing the Game

Why is linguistics essential when dealing with healthcare data?

Why Health Data Strategies Fail Before They Start

Private AI to Redefine Enterprise Data Privacy and Compliance with NVIDIA

EDPB’s Pseudonymization Guideline and the Challenge of Unstructured Data

HHS’ proposed HIPAA Amendment to Strengthen Cybersecurity in Healthcare and how Private AI can Support Compliance

Japan's Health Data Anonymization Act: Enabling Large-Scale Health Research

What the International AI Safety Report 2025 has to say about Privacy Risks from General Purpose AI

Private AI 4.0: Your Data’s Potential, Protected and Unlocked

How Private AI Facilitates GDPR Compliance for AI Models: Insights from the EDPB's Latest Opinion

Navigating the New Frontier of Data Privacy: Protecting Confidential Company Information in the Age of AI

Belgium’s Data Protection Authority on the Interplay of the EU AI Act and the GDPR

Enhancing Compliance with US Privacy Regulations for the Insurance Industry Using Private AI

Navigating Compliance with Quebec’s Act Respecting Health and Social Services Information Through Private AI’s De-identification Technology

Unlocking New Levels of Accuracy in Privacy-Preserving AI with Co-Reference Resolution

Strengthened Data Protection Enforcement on the Horizon in Japan

How Private AI Can Help to Comply with Thailand's PDPA

How Private AI Can Help Financial Institutions Comply with OSFI Guidelines

The American Privacy Rights Act – The Next Generation of Privacy Laws

How Private AI Can Help with Compliance under China’s Personal Information Protection Law (PIPL)

PII Redaction for Reviews Data: Ensuring Privacy Compliance when Using Review APIs

Independent Review Certifies Private AI’s PII Identification Model as Secure and Reliable

To Use or Not to Use AI: A Delicate Balance Between Productivity and Privacy

To Use or Not to Use AI: A Delicate Balance Between Productivity and Privacy

News from NIST: Dioptra, AI Risk Management Framework (AI RMF) Generative AI Profile, and How PII Identification and Redaction can Support Suggested Best Practices

Handling Personal Information by Financial Institutions in Japan – The Strict Requirements of the FSA Guidelines

日本における金融機関の個人情報の取り扱い - 金融庁ガイドラインの要件

Leveraging Private AI to Meet the EDPB’s AI Audit Checklist for GDPR-Compliant AI Systems

Who is Responsible for Protecting PII?

How Private AI can help the Public Sector to Comply with the Strengthening Cyber Security and Building Trust in the Public Sector Act, 2024

A Comparison of the Approaches to Generative AI in Japan and China

Updated OECD AI Principles to keep up with novel and increased risks from general purpose and generative AI

Is Consent Required for Processing Personal Data via LLMs?

The evolving landscape of data privacy legislation in healthcare in Germany

The CIO’s and CISO’s Guide for Proactive Reporting and DLP with Private AI and Elastic

The Evolving Landscape of Health Data Protection Laws in the United States

Comparing Privacy and Safety Concerns Around Llama 2, GPT4, and Gemini

How to Safely Redact PII from Segment Events using Destination Insert Functions and Private AI API

WHO’s AI Ethics and Governance Guidance for Large Multi-Modal Models operating in the Health Sector – Data Protection Considerations

How to Protect Confidential Corporate Information in the ChatGPT Era

Unlocking the Power of Retrieval Augmented Generation with Added Privacy: A Comprehensive Guide

Leveraging ChatGPT and other AI Tools for Legal Services

Leveraging ChatGPT and other AI tools for HR

Leveraging ChatGPT in the Banking Industry

Law 25 and Data Transfers Outside of Quebec

The Colorado and Connecticut Data Privacy Acts

Unlocking Compliance with the Japanese Data Privacy Act (APPI) using Private AI

Tokenization and Its Benefits for Data Protection

Private AI Launches Cloud API to Streamline Data Privacy

Processing of Special Categories of Data in Germany

End-to-end Privacy Management

Privacy Breach Reporting Requirements under Law25

Migrating Your Privacy Workflows from Amazon Comprehend to Private AI

A Comparison of the Approaches to Generative AI in the US and EU

Benefits of AI in Healthcare and Data Sources (Part 1)

Privacy Attacks against Data and AI Models (Part 3)

Risks of Noncompliance and Challenges around Privacy-Preserving Techniques (Part 2)

Enhancing Data Lake Security: A Guide to PII Scanning in S3 buckets

The Costs of a Data Breach in the Healthcare Sector and its Privacy Compliance Implications

Navigating GDPR Compliance in the Life Cycle of LLM-Based Solutions

What’s New in Version 3.8

How to Protect Your Business from Data Leaks: Lessons from Toyota and the Department of Home Affairs

New York's Acceptable Use of AI Policy: A Focus on Privacy Obligations

Safeguarding Personal Data in Sentiment Analysis: A Guide to PII Anonymization

Changes to South Korea’s Personal Information Protection Act to Take Effect on March 15, 2024

Australia’s Plan to Regulate High-Risk AI

How Private AI can help comply with the EU AI Act

Comment la Loi 25 Impacte l'Utilisation de ChatGPT et de l'IA en Général

Endgültiger Entwurf des Gesetzes über Künstliche Intelligenz – Datenschutzpflichten der KI-Modelle mit Allgemeinem Verwendungszweck

How Law25 Impacts the Use of ChatGPT and AI in General

Is Salesforce Law25 Compliant?

Creating De-Identified Embeddings

Exciting Updates in 3.7

EU AI Act Final Draft – Obligations of General-Purpose AI Systems relating to Data Privacy

FTC Privacy Enforcement Actions Against AI Companies

The CCPA, CPRA, and California's Evolving Data Protection Landscape

HIPAA Compliance – Expert Determination Aided by Private AI

Private AI Software As a Service Agreement

EU's Review of Canada's Data Protection Adequacy: Implications for Ongoing Privacy Reform

Acceptable Use Policy

ISO/IEC 42001: A New Standard for Ethical and Responsible AI Management

Reviewing OpenAI's 31st Jan 2024 Privacy and Business Terms Updates

Comparing OpenAI vs. Azure OpenAI Services

Quebec’s Draft Regulation Respecting the Anonymization of Personal Information

Version 3.6 Release: Enhanced Streaming, Auto Model Selection, and More in Our Data Privacy Platform

Brazil's LGPD: Anonymization, Pseudonymization, and Access Requests

LGPD do Brasil: Anonimização, Pseudonimização e Solicitações de Acesso à Informação

Canada’s Principles for Responsible, Trustworthy and Privacy-Protective Generative AI Technologies and How to Comply Using Private AI

Private AI Named One of The Most Innovative RegTech Companies by RegTech100

Data Integrity, Data Security, and the New NIST Cybersecurity Framework

Safeguarding Privacy with Commercial LLMs

Cybersecurity in the Public Sector: Protecting Vital Services

Privacy Impact Assessment (PIA) Requirements under Law25

Elevate Your Experience with Version 3.5

Fine-Tuning LLMs with a Focus on Privacy

GDPR in Germany: Challenges of German Data Privacy (Part 2)

Comply with US Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence using Private AI

How to Comply with EU AI Act using PrivateGPT