Addressing Privacy and the GDPR in ChatGPT and Large Language Models

Jan 18, 2023
Share this post
Sharing to FacebookSharing to LinkedInSharing to XSharing to Email

Large language models (LLMs) are a type of machine learning model that are trained on vast amounts of text data to generate human-like text. They are able to generate text that can be indistinguishable from text written by a human, and can be used for a wide range of natural language processing tasks such as language translation, text summarization, and question answering. (Source: ChatGPT)

These language models, as defined by Springer, assign “a probability to a piece of unseen text, based on some training data.” Usually, very large amounts of text are used to train a language model which, roughly speaking, learns the probability distribution of sequences of words.

While these language models are becoming increasingly popular and more widely accessible, they also come with privacy implications that must be addressed. One major concern when it comes to privacy and data protection regulation compliance is that LLMs can, in a sense, “memorize” personally identifiable information (PII). This PII is then at risk of being discovered by another user or an attacker. We have previously covered the privacy risks of language models quite extensively.

In this post we discuss how LLMs are being used (and misused), what risks companies leveraging these technologies should be thinking about in respect to exposing PII, and what solutions exist to protect their customers’ personal data.

Language Model Applications

There are a handful of companies who have created large language models for commercial use, including OpenAI’s ChatGPT and GPT-3, and Google’s LaMDA.

Jasper AI, an AI content platform which leverages GPT-3, has focused on generating marketing pieces such as blogs, ads, social media posts, and more. They raised $125M on a $1.5B valuation in October and were named “one of America’s fastest-growing private companies.”

One of the major use cases that otherwise comes up for LLMs is chatbots. Chatbots can be used for customer service, virtual assistants, and even physical and mental healthcare applications.

Malicious Use

While, rightfully so, the misuse of ChatPGT for generating malicious code and for creating mass customized phishing scams has come up a lot recently, there has been relatively little reflection on what it means for companies using these LLMs to send their own users’ personal data to a third party.

Much like the rise of political manipulation by foreign powers on social media, it is hard for regulators to immediately catch up to new technology and for tech companies to foresee and prevent all of the ways in which their tech might be misused. In the case of OpenAI, there is some clear evidence that they are putting thought into limiting the harms of their system and part of their methodology does require the ability to actually see the inputs to their systems.

Asking ChatGPT About Personally Identifiable Information

Personally Identifiable Information (PII) is any data that can be used to identify a given person. Direct identifiers include things like name, age, address, credit card number, etc. Indirect identifiers are any given pieces of information that can be combined together in order to identify a given person such as IP address, religion, birthplace, etc.

How does ChatGPT deal with that? Let’s ask it!

Question: How does ChatGPT deal with personally identifiable information?

Response: As a language model, GPT-3 does not have the ability to collect or store any personal information. It can only process the information that is given to it as input and respond with generated text based on that input. When dealing with personal information, it is important to keep in mind that GPT-3 may generate text that contains sensitive information, so it's the responsibility of the user to ensure that proper precautions are taken to protect the privacy of any individuals whose information is being used.

In terms of usage, OpenAI, the company behind GPT-3, has developed safety mechanisms such as "davinci-coding" and "curie" to prevent the model from generating sensitive or harmful content. Additionally, when working with personal information, it is important to follow data protection laws and regulations such as General Data Protection Regulation (GDPR) or California Consumer Privacy Act (CCPA) to ensure that the personal information is being handled appropriately.”

What Does This Mean?

It is up to every business using the system to determine what is or is not personally identifiable information from their users and remove or replace it before sending it through to ChatGPT. If not, they may be in breach of some very serious data protection regulations, such as the the European General Data Protection Regulation (GDPR) and numerous other data protection regulations worldwide relevantly require:

  1. Positive consent for the collection and use of personal data; that is, a user has to explicitly give you the right to use their data for specific purposes.
  2. Right to be forgotten, where a user can request that all instances of their personally identifiable information be deleted.
  3. Access to information, which means a user has the right to request access to all of the PII that has been collected from them.
  4. Data minimization, which requires companies to remove all PII that is unnecessary from the data they collect.
  5. Pseudonymization or Anonymization where possible, which means replacing or removing the PII.

Solution: Redaction or Synthetic PII

Redacting PII from chatbot data sets is no small feat. Unstructured data such as chat transcripts are notoriously difficult to redact properly, let alone at scale. Human redaction is slow, expensive, and inaccurate, whereas automated solutions such as regexes are fast and cheap but struggle with idiosyncratic data often found in chatbot training data. While concealing or masking customers’ personal data in a highly accurate and efficient way might be nearly impossible using standard tools, AI can make the impossible possible.

Data Redaction

Data redaction is the process of obfuscating sensitive data into unintelligible forms. Such data may include credit card numbers, addresses, names, ages, etc.

The above image is an example of a redacted chatbot conversation. Notice that the unredacted message to the left contains quite a bit of the user’s personal data that is better kept safe. Using Private AI’s technology, we have replaced Francois’ personally identifiable information (name, account number, and payment details) with obscured values, maintaining the privacy of the message sender before sharing with ML teams for customer service agent training, business insight extraction, or a myriad of other tasks.

Synthetic PII Replacement

As the name implies, in the synthetic data replacement process, sensitive data is replaced with contextually-correct fake data. This process offers excellent data security because the data used isn't actually linked to a real person anymore, yet still contains the critical surrounding context of the conversation for accurate training. This type of data is perfect for training machine learning models such as AI chatbots, as the fake PII within the transcript is indistinguishable from real-life customer PII, leading to more accurate training without risking data privacy due to machine learning model memorization.

In the above image, Private AI’s technology has replaced the name of Francois, the account number, and the payment details with fake values, maintaining the privacy of the customer and the naturalness of the data.

After performing either data redaction or replacement, the data is now ready to be used to send to ChatGPT.

Let’s Try It Live!

Example of a ChatGPT input in which Personally Identifiable Information is not redacted

What is personally identifiable information within this message?

Hi, I just bought a Miele hardwood floor vacuum but I can't figure out how to get it to work. I've got these hardwood floors, which are famous where I lived in [LOCATION_COUNTRY_1], and I need to take care of them before my mother's birthday party on [DOB_1]! I paid [MONEY_1] for this! My number's [PHONE_NUMBER_1] if you'd like to call me so we can get this thing running!

What does it look like with Synthetic PII?

Hi, I just bought a Miele hardwood floor vacuum but I can't figure out how to get it to work. I've got these hardwood floors, which are famous where I lived in Singapore, and I need to take care of them before my mother's birthday party on july 4! I paid 5000 dollar for this! My number's 44 6622444445 if you'd like to call me so we can get this thing running!

Does the response change as a result of replacing the PII?

Example of a ChatGPT input in which Personally Identifiable Information is not redacted

Conclusion

While some of the ethical and legal risks of Large Language Models have yet to be solved, such as creating code which may be malicious in nature, there’s one problem which can be thoroughly mitigated by every business using these LLMs: that of protecting personally identifiable information. Replacing PII with synthetic PII often leads to little or no change in output utility and prevents non-compliance with data protection regulations like the GDPR.

You can also use tools, such as PrivateGPT, that protect the PII within text inputs before it gets shared with third parties like ChatGPT. With PrivateGPT, only necessary information gets shared with OpenAI’s language model APIs, so you can confidently leverage the power of LLMs while keeping sensitive data secure. Try PrivateGPT for free today at chat.private-ai.com

Safely leverage ChatGPT for your business without compromising privacy with PrivateGPT: The privacy layer for ChatGPT

Try PrivateGPT Today

Data Left Behind: AI Scribes’ Promises in Healthcare

Why is linguistics essential when dealing with healthcare data?

Why Health Data Strategies Fail Before They Start

Private AI to Redefine Enterprise Data Privacy and Compliance with NVIDIA

EDPB’s Pseudonymization Guideline and the Challenge of Unstructured Data

HHS’ proposed HIPAA Amendment to Strengthen Cybersecurity in Healthcare and how Private AI can Support Compliance

Japan's Health Data Anonymization Act: Enabling Large-Scale Health Research

What the International AI Safety Report 2025 has to say about Privacy Risks from General Purpose AI

Private AI 4.0: Your Data’s Potential, Protected and Unlocked

How Private AI Facilitates GDPR Compliance for AI Models: Insights from the EDPB's Latest Opinion

Navigating the New Frontier of Data Privacy: Protecting Confidential Company Information in the Age of AI

Belgium’s Data Protection Authority on the Interplay of the EU AI Act and the GDPR

Enhancing Compliance with US Privacy Regulations for the Insurance Industry Using Private AI

Navigating Compliance with Quebec’s Act Respecting Health and Social Services Information Through Private AI’s De-identification Technology

Unlocking New Levels of Accuracy in Privacy-Preserving AI with Co-Reference Resolution

Strengthened Data Protection Enforcement on the Horizon in Japan

How Private AI Can Help to Comply with Thailand's PDPA

How Private AI Can Help Financial Institutions Comply with OSFI Guidelines

The American Privacy Rights Act – The Next Generation of Privacy Laws

How Private AI Can Help with Compliance under China’s Personal Information Protection Law (PIPL)

PII Redaction for Reviews Data: Ensuring Privacy Compliance when Using Review APIs

Independent Review Certifies Private AI’s PII Identification Model as Secure and Reliable

To Use or Not to Use AI: A Delicate Balance Between Productivity and Privacy

To Use or Not to Use AI: A Delicate Balance Between Productivity and Privacy

News from NIST: Dioptra, AI Risk Management Framework (AI RMF) Generative AI Profile, and How PII Identification and Redaction can Support Suggested Best Practices

Handling Personal Information by Financial Institutions in Japan – The Strict Requirements of the FSA Guidelines

日本における金融機関の個人情報の取り扱い - 金融庁ガイドラインの要件

Leveraging Private AI to Meet the EDPB’s AI Audit Checklist for GDPR-Compliant AI Systems

Who is Responsible for Protecting PII?

How Private AI can help the Public Sector to Comply with the Strengthening Cyber Security and Building Trust in the Public Sector Act, 2024

A Comparison of the Approaches to Generative AI in Japan and China

Updated OECD AI Principles to keep up with novel and increased risks from general purpose and generative AI

Is Consent Required for Processing Personal Data via LLMs?

The evolving landscape of data privacy legislation in healthcare in Germany

The CIO’s and CISO’s Guide for Proactive Reporting and DLP with Private AI and Elastic

The Evolving Landscape of Health Data Protection Laws in the United States

Comparing Privacy and Safety Concerns Around Llama 2, GPT4, and Gemini

How to Safely Redact PII from Segment Events using Destination Insert Functions and Private AI API

WHO’s AI Ethics and Governance Guidance for Large Multi-Modal Models operating in the Health Sector – Data Protection Considerations

How to Protect Confidential Corporate Information in the ChatGPT Era

Unlocking the Power of Retrieval Augmented Generation with Added Privacy: A Comprehensive Guide

Leveraging ChatGPT and other AI Tools for Legal Services

Leveraging ChatGPT and other AI tools for HR

Leveraging ChatGPT in the Banking Industry

Law 25 and Data Transfers Outside of Quebec

The Colorado and Connecticut Data Privacy Acts

Unlocking Compliance with the Japanese Data Privacy Act (APPI) using Private AI

Tokenization and Its Benefits for Data Protection

Private AI Launches Cloud API to Streamline Data Privacy

Processing of Special Categories of Data in Germany

End-to-end Privacy Management

Privacy Breach Reporting Requirements under Law25

Migrating Your Privacy Workflows from Amazon Comprehend to Private AI

A Comparison of the Approaches to Generative AI in the US and EU

Benefits of AI in Healthcare and Data Sources (Part 1)

Privacy Attacks against Data and AI Models (Part 3)

Risks of Noncompliance and Challenges around Privacy-Preserving Techniques (Part 2)

Enhancing Data Lake Security: A Guide to PII Scanning in S3 buckets

The Costs of a Data Breach in the Healthcare Sector and its Privacy Compliance Implications

Navigating GDPR Compliance in the Life Cycle of LLM-Based Solutions

What’s New in Version 3.8

How to Protect Your Business from Data Leaks: Lessons from Toyota and the Department of Home Affairs

New York's Acceptable Use of AI Policy: A Focus on Privacy Obligations

Safeguarding Personal Data in Sentiment Analysis: A Guide to PII Anonymization

Changes to South Korea’s Personal Information Protection Act to Take Effect on March 15, 2024

Australia’s Plan to Regulate High-Risk AI

How Private AI can help comply with the EU AI Act

Comment la Loi 25 Impacte l'Utilisation de ChatGPT et de l'IA en Général

Endgültiger Entwurf des Gesetzes über Künstliche Intelligenz – Datenschutzpflichten der KI-Modelle mit Allgemeinem Verwendungszweck

How Law25 Impacts the Use of ChatGPT and AI in General

Is Salesforce Law25 Compliant?

Creating De-Identified Embeddings

Exciting Updates in 3.7

EU AI Act Final Draft – Obligations of General-Purpose AI Systems relating to Data Privacy

FTC Privacy Enforcement Actions Against AI Companies

The CCPA, CPRA, and California's Evolving Data Protection Landscape

HIPAA Compliance – Expert Determination Aided by Private AI

Private AI Software As a Service Agreement

EU's Review of Canada's Data Protection Adequacy: Implications for Ongoing Privacy Reform

Acceptable Use Policy

ISO/IEC 42001: A New Standard for Ethical and Responsible AI Management

Reviewing OpenAI's 31st Jan 2024 Privacy and Business Terms Updates

Comparing OpenAI vs. Azure OpenAI Services

Quebec’s Draft Regulation Respecting the Anonymization of Personal Information

Version 3.6 Release: Enhanced Streaming, Auto Model Selection, and More in Our Data Privacy Platform

Brazil's LGPD: Anonymization, Pseudonymization, and Access Requests

LGPD do Brasil: Anonimização, Pseudonimização e Solicitações de Acesso à Informação

Canada’s Principles for Responsible, Trustworthy and Privacy-Protective Generative AI Technologies and How to Comply Using Private AI

Private AI Named One of The Most Innovative RegTech Companies by RegTech100

Data Integrity, Data Security, and the New NIST Cybersecurity Framework

Safeguarding Privacy with Commercial LLMs

Cybersecurity in the Public Sector: Protecting Vital Services

Privacy Impact Assessment (PIA) Requirements under Law25

Elevate Your Experience with Version 3.5

Fine-Tuning LLMs with a Focus on Privacy

GDPR in Germany: Challenges of German Data Privacy (Part 2)

Comply with US Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence using Private AI

How to Comply with EU AI Act using PrivateGPT

Navigating the Privacy Paradox: A Guide to Ethical Fine-Tuning of Large Language Models

Adding Privacy to LangChain with Private AI