Private AI Secures $3.15 Million Seed Round to Streamline Privacy Compliance for Enterprises

Private AI
Sep 15, 2021
Share this post
Sharing to FacebookSharing to LinkedInSharing to XSharing to Email

 

Private AI will use the funds on key growth initiatives, including further development of their software platform.

TORONTO, ONT., Sept. 15, 2021— Private AI, a developer of privacy-preserving machine learning and natural language processing tools, is pleased to announce that it has secured $3.15 million in seed funding to improve their product offering, expand the team, and accelerate their acquisition of domestic and international customers. The growth financing is led by Microsoft’s venture fund M12 and Forum Ventures, following a sixfold revenue increase since January. Private AI’s customer base now ranges from startups to multi-billion dollar companies, including financial institutions and conversational AI companies.

“Companies of all sizes are under pressure to comply with customer data governance regulations and to protect sensitive data. In parallel, business digitization is accelerating, and more customer data unlocks more insights and enhanced AI/ML model training capabilities,” said M12 Principal Priyanka Mitra. “We’re thrilled to support the world-class team at Private AI as they augment their customers’ data redaction and pseudonymization capabilities, improving enterprise security posture without sacrificing business intelligence.”

Joining M12 and Forum Ventures in the $3.15 million heavily oversubscribed seed round is pre-seed investor Differential Ventures, along with new investors Shasta Ventures, Hyperplane Venture Capital, and Parliament Angels, a group of early Twilio employees. The startup has also garnered investments from Chris Hadfield, among others. The new round brings Private AI’s funding total to date to $3.45 million. 

“This round of funding will help us provide organizations and their developers with world-leading easy-to-integrate tools so they can excel in this post-GDPR world,” says Patricia Thaine, CEO of Private AI. “Our partners at M12 and Forum Ventures both have deep expertise in B2B SaaS and developer-focused tools, and their investment and counsel will be key to fuelling our growth.” 

Private AI was started by Thaine, Pieter Luitjens (CTO), and Professor Gerald Penn (Chief Science Officer). Thaine and Luitjens hold Master’s degrees in Computer Science and Engineering, respectively, from the University of Toronto. While experimenting with prototype browser extensions and apps, they realized how susceptible most software and data pipelines were to data leaks or breaches, and how difficult it was to implement adequate privacy safeguards within those workflows. Thus they built a tool to redact sensitive information from text.

What distinguishes Private AI from similar offerings is how easily and securely the company’s software can be implemented. It only takes three lines of code and operates as a black box. Customer tests have shown that Private AI’s system outperforms those of Amazon and Google by significant margins, and are able to operate directly within their clients’ workflows and infrastructure, which prevents sensitive data from ever being shared outside clients’ systems. The company’s state-of-the-art AI models are able to hit greater than 99% accuracy in identifying and redacting personal data across more than fifty different entities (ex. name, address, blood type, zodiac sign, credit card number, etc.) in seven different languages. The AI system performs particularly well on messy, real-world text, such as emails, chat messages and free-text fields in databases.

“Many software engineering teams don’t have strong procedures or processes in place to identify and protect this data,” says Thaine. “Instead, companies often rely on ineffective and outdated systems that don’t work well on messy, real world data, or simply trust their employee onboarding paperwork commitments to protect them.”

But there’s a growing interest in rectifying those gaps, particularly with the advent of more stringent data privacy legislation coming into effect around the world, including Bill C-11 in Canada and the CPRA in California.

"From the very first meeting with Patricia, we had complete conviction in the team and their vision. They've built a best-in-class product that ensures enterprises can truly respect and abide by consumers' ever-growing privacy demands – in a cost-effective and simple way," said Jonah Midanik, Managing Partner at Forum Ventures. "We are proud to be on this journey with this team, alongside M12 and other top tier investors."

To learn more about Private AI, visit https://www.private-ai.com

ABOUT PRIVATE AI:

Private AI is developing privacy-preserving machine learning and natural language processing tools. The company envisions a future in which private, secure, and seamless data analysis enhances creative software development. Designed for developers, the company’s software can be deployed in any workflow—on-prem, web, or mobile—with just a few lines of code, so users can quickly add privacy protection to their data pipelines. To learn more, visit https://www.private-ai.com

MEDIA CONTACT: 

Lauren Gill, MAG PR at lauren@mooringadvisorygroup.com

Data Left Behind: AI Scribes’ Promises in Healthcare

Why is linguistics essential when dealing with healthcare data?

Why Health Data Strategies Fail Before They Start

Private AI to Redefine Enterprise Data Privacy and Compliance with NVIDIA

EDPB’s Pseudonymization Guideline and the Challenge of Unstructured Data

HHS’ proposed HIPAA Amendment to Strengthen Cybersecurity in Healthcare and how Private AI can Support Compliance

Japan's Health Data Anonymization Act: Enabling Large-Scale Health Research

What the International AI Safety Report 2025 has to say about Privacy Risks from General Purpose AI

Private AI 4.0: Your Data’s Potential, Protected and Unlocked

How Private AI Facilitates GDPR Compliance for AI Models: Insights from the EDPB's Latest Opinion

Navigating the New Frontier of Data Privacy: Protecting Confidential Company Information in the Age of AI

Belgium’s Data Protection Authority on the Interplay of the EU AI Act and the GDPR

Enhancing Compliance with US Privacy Regulations for the Insurance Industry Using Private AI

Navigating Compliance with Quebec’s Act Respecting Health and Social Services Information Through Private AI’s De-identification Technology

Unlocking New Levels of Accuracy in Privacy-Preserving AI with Co-Reference Resolution

Strengthened Data Protection Enforcement on the Horizon in Japan

How Private AI Can Help to Comply with Thailand's PDPA

How Private AI Can Help Financial Institutions Comply with OSFI Guidelines

The American Privacy Rights Act – The Next Generation of Privacy Laws

How Private AI Can Help with Compliance under China’s Personal Information Protection Law (PIPL)

PII Redaction for Reviews Data: Ensuring Privacy Compliance when Using Review APIs

Independent Review Certifies Private AI’s PII Identification Model as Secure and Reliable

To Use or Not to Use AI: A Delicate Balance Between Productivity and Privacy

To Use or Not to Use AI: A Delicate Balance Between Productivity and Privacy

News from NIST: Dioptra, AI Risk Management Framework (AI RMF) Generative AI Profile, and How PII Identification and Redaction can Support Suggested Best Practices

Handling Personal Information by Financial Institutions in Japan – The Strict Requirements of the FSA Guidelines

日本における金融機関の個人情報の取り扱い - 金融庁ガイドラインの要件

Leveraging Private AI to Meet the EDPB’s AI Audit Checklist for GDPR-Compliant AI Systems

Who is Responsible for Protecting PII?

How Private AI can help the Public Sector to Comply with the Strengthening Cyber Security and Building Trust in the Public Sector Act, 2024

A Comparison of the Approaches to Generative AI in Japan and China

Updated OECD AI Principles to keep up with novel and increased risks from general purpose and generative AI

Is Consent Required for Processing Personal Data via LLMs?

The evolving landscape of data privacy legislation in healthcare in Germany

The CIO’s and CISO’s Guide for Proactive Reporting and DLP with Private AI and Elastic

The Evolving Landscape of Health Data Protection Laws in the United States

Comparing Privacy and Safety Concerns Around Llama 2, GPT4, and Gemini

How to Safely Redact PII from Segment Events using Destination Insert Functions and Private AI API

WHO’s AI Ethics and Governance Guidance for Large Multi-Modal Models operating in the Health Sector – Data Protection Considerations

How to Protect Confidential Corporate Information in the ChatGPT Era

Unlocking the Power of Retrieval Augmented Generation with Added Privacy: A Comprehensive Guide

Leveraging ChatGPT and other AI Tools for Legal Services

Leveraging ChatGPT and other AI tools for HR

Leveraging ChatGPT in the Banking Industry

Law 25 and Data Transfers Outside of Quebec

The Colorado and Connecticut Data Privacy Acts

Unlocking Compliance with the Japanese Data Privacy Act (APPI) using Private AI

Tokenization and Its Benefits for Data Protection

Private AI Launches Cloud API to Streamline Data Privacy

Processing of Special Categories of Data in Germany

End-to-end Privacy Management

Privacy Breach Reporting Requirements under Law25

Migrating Your Privacy Workflows from Amazon Comprehend to Private AI

A Comparison of the Approaches to Generative AI in the US and EU

Benefits of AI in Healthcare and Data Sources (Part 1)

Privacy Attacks against Data and AI Models (Part 3)

Risks of Noncompliance and Challenges around Privacy-Preserving Techniques (Part 2)

Enhancing Data Lake Security: A Guide to PII Scanning in S3 buckets

The Costs of a Data Breach in the Healthcare Sector and its Privacy Compliance Implications

Navigating GDPR Compliance in the Life Cycle of LLM-Based Solutions

What’s New in Version 3.8

How to Protect Your Business from Data Leaks: Lessons from Toyota and the Department of Home Affairs

New York's Acceptable Use of AI Policy: A Focus on Privacy Obligations

Safeguarding Personal Data in Sentiment Analysis: A Guide to PII Anonymization

Changes to South Korea’s Personal Information Protection Act to Take Effect on March 15, 2024

Australia’s Plan to Regulate High-Risk AI

How Private AI can help comply with the EU AI Act

Comment la Loi 25 Impacte l'Utilisation de ChatGPT et de l'IA en Général

Endgültiger Entwurf des Gesetzes über Künstliche Intelligenz – Datenschutzpflichten der KI-Modelle mit Allgemeinem Verwendungszweck

How Law25 Impacts the Use of ChatGPT and AI in General

Is Salesforce Law25 Compliant?

Creating De-Identified Embeddings

Exciting Updates in 3.7

EU AI Act Final Draft – Obligations of General-Purpose AI Systems relating to Data Privacy

FTC Privacy Enforcement Actions Against AI Companies

The CCPA, CPRA, and California's Evolving Data Protection Landscape

HIPAA Compliance – Expert Determination Aided by Private AI

Private AI Software As a Service Agreement

EU's Review of Canada's Data Protection Adequacy: Implications for Ongoing Privacy Reform

Acceptable Use Policy

ISO/IEC 42001: A New Standard for Ethical and Responsible AI Management

Reviewing OpenAI's 31st Jan 2024 Privacy and Business Terms Updates

Comparing OpenAI vs. Azure OpenAI Services

Quebec’s Draft Regulation Respecting the Anonymization of Personal Information

Version 3.6 Release: Enhanced Streaming, Auto Model Selection, and More in Our Data Privacy Platform

Brazil's LGPD: Anonymization, Pseudonymization, and Access Requests

LGPD do Brasil: Anonimização, Pseudonimização e Solicitações de Acesso à Informação

Canada’s Principles for Responsible, Trustworthy and Privacy-Protective Generative AI Technologies and How to Comply Using Private AI

Private AI Named One of The Most Innovative RegTech Companies by RegTech100

Data Integrity, Data Security, and the New NIST Cybersecurity Framework

Safeguarding Privacy with Commercial LLMs

Cybersecurity in the Public Sector: Protecting Vital Services

Privacy Impact Assessment (PIA) Requirements under Law25

Elevate Your Experience with Version 3.5

Fine-Tuning LLMs with a Focus on Privacy

GDPR in Germany: Challenges of German Data Privacy (Part 2)

Comply with US Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence using Private AI

How to Comply with EU AI Act using PrivateGPT

Navigating the Privacy Paradox: A Guide to Ethical Fine-Tuning of Large Language Models

Adding Privacy to LangChain with Private AI